
ETMS System Design Document
Version 6.0

28-1

Section 28

Ground Time Prediction Subsystem

The Ground Time Prediction Subsystem (GTPS) provides improved predictions of aircraft
ground times to the Flight DataBase Processor (FDBP). It provides a ground time prediction
for each flight that the FDBP requests. The GTPS bases its predictions upon the historical
flight data that it collects and processes. As a secondary feature, the GTPS provides to
requestors, through its Delay Advisor (see Section 21) sub-function, reports of the historical
performance of flight ground times.

Design Issue: Batching of Data Processing

Insofar as it is practical, data processing has been concentrated in batch mode processes so
that the real-time continuous processes have less work to do.

Design Issue: Two modes of generating ground time predictions

The GTPS has two significant modes of generating ground time predictions. (It also allows
defaults in special cases.) One mode generates predictions based on a flight identifier (FID).
The other mode generates predictions based on a category (Cat). The GTPS is designed to
prepare both modes whenever possible so that when the FDBP requests a prediction, the
provide_gtp subfunction selects the most appropriate prediction.

Design Issue: Coordinated Universal Time (UTC)

Except where noted, all times used in the GTPS are UTCs, expressed in minutes after UTC
midnight. All dates are expressed in Julian days, a representation in which the date is
expressed as elapsed days from the commencement of January 1, 1980. January 1, 1980, is
considered day 0, and subsequent days are enumerated consecutively to the current day.

Exceptions are that UTC hour and minute time formats are used in the cat_def_file and in the
delay_advisor reports. Month and day date formats are used in the delay_advisor reports.

Processing Overview

The GTPS (see Figure 28-1) supplies the FDBP with a predicted ground time and predicted
time enroute for a specific flight, upon request. The request will be made some time prior to
the flight's departure. After flight completion, the predicted ground time value is:

ETMS System Design Document
Version 6.0

28-2

build_def_file

cat_def_file

proc_flushed flts
Archive
Interface

NewFlights

store_flushed_flts

history.[date]

GTPDB
_Cat

Old-
Cat
File

Cat
DB

catfile

GTPDB
_FID

Old-
FID
File

FID
DB

fidfile.short fidfile

FDBP

FDB_GTPS
Interface

Provide_GTP
getfiddata
getcatdata

Create DB
bldcatdb
bldfiddb

Delay Advisor

Access DB
getfiddata
getcatdata

Create DB
bldcatdb
bldfiddb

FID
DB

CAT
DB

FID
DB

CAT
DB

Build Prediction Tables

Figure 28-1. Data Flow of the Ground Time Prediction Subsystem

ETMS System Design Document
Version 6.0

28-3

• Flushed by the FDBP

• Collected by the GTPS

• Processed by the GTPS, along with other flight record information so that
it helps form subsequent predictions

• Made available for users to view via the GTPS Delay Advisor

This process can be represented as several ETMS subfunctions.

The GTPS uses the following subfunctions or processes, each of which is executed by one
or more processes or routines:

• The store_flushed_flts subfunction receives flushed flight records from
the FDBP and stores a subset of each flushed record in an archive of
history files.

• The build_prediction_tables process takes history files and uses them to
create an FID-based and category-based database of ground time
information for use by the subsequent subfunctions.

• The provide_gtp subfunction is incorporated into the FDBP. It provides
ground time predictions for flights as the FDBP needs them. It takes
those predictions from a category-based or an FID-based database in
accordance with an algorithm defined later in this section.

• The build_def_file ancilliary process generates a static table of
information for each of the key airports for which the category database
provides information. This table of information is stored in the
cat_def_file, which is needed by all the subfunctions except
store_flushed_flts.

• The delay_advisor subfunction provides to TSD users ground time
information reports about both specific individual flight departures and
about the ensemble of flights previously departed from a specific airport.
See Section 21 for a detailed description of the Delay Advisor.

The store_flushed_flts, delay_advisor and provide_gtp subfunctions operate continuously.
The build_prediction_tables subfunction operates in batch mode (nominally once weekly).
The build_def_file ancillary subfunction is executed only as needed, such as to replace a lost
cat_def_file or to generate a changed one.

28.1 The Store_flushed_flts (Sff) Subfunction

ETMS System Design Document
Version 6.0

28-4

The Store_flushed_flts (Sff) subfunction collects flight records of departed flights as they
time out and are flushed from the FDBP and stores them in a history file archive composed
of ASCII files. These ASCII files are then available for use as inputs to the programs that
build the GTPS flight and category databases.

Processing Overview

The Sff subfunction consists of three processes: Sff receiver, Sff collect, and Sff manager.
The Sff receiver process receives flushed flights from the FDBP. The Sff collect retrieves
the flushed flights and stores them in ASCII files. The Sff manager acts as a framework for
controlling the other two processes. Figure 28-2 illustrates the process flow.

Sff
Rece ive r

Sff Fl ight
and T ime
Messages

Input Queue

Sff m a n a g e r

Sff co l lect Ou tpu t
file

Sff Fl ight
Messages

Figure 28-2. Data Flow of the Store_flushed_flts Subfunction

28.1.1 The Sff Receiver Process

Purpose

The Sff receiver process queues the flight and time data from the FDBP.

Execution Control

Upon initialization, the Sff manager process starts the Sff receiver as a child process. This
data-driven process runs continuously; if the Sff manager process fails, the Sff manager
parent process restarts it using the old queue so that a minimum amount of data is lost. Non-

ETMS System Design Document
Version 6.0

28-5

fatal errors cause an error message to appear in the process window of the ETMS operator
node.

Input

The Sff receiver input consists of flight data (without the event list) and time data from the
FDBP.

Output

The Sff receiver output is identical to its input.

Processing

The Sff receiver creates a socket in order to receive data from the FDBP. The Sff receiver
then allocates memory for use as a queue. As messages arrive via the socket, the Sff receiver
puts them in the queue for use by the Sff collect process when it is ready. See Section 23.2
for a more detailed description of receiver processes.

Error Conditions and Handling

In general, if the files necessary for creating the queues are locked, Sff receiver unlocks them
before creating or opening them.

28.1.2 The Sff Collect Process

Purpose

The Sff collect process stores as ASCII files a subset of the FDB flight data received by the
Sff receiver.

Execution Control

Upon initialization, the Sff manager starts the Sff collect process. This data-driven process
runs continuously. Non-fatal errors cause an error message to appear in the process window
of the ETMS operator's node.

Input

ETMS System Design Document
Version 6.0

28-6

The Sff collect process input consists of flight data (without the event list) from the FDBP.
Refer to Table 28-2 for a detailed description of this input.

Output

Sff collect output is a subset of its input. Refer to Table 28-2, the history_file data structure,
for a detailed description of this output.

Processing

Sff collect retrieves flight data from the Sff manager. It increments the count of the number
of flight data processed and then writes a subset of the flight data to an open file called
history.[date-time].

Error Conditions and Handling

Non-fatal errors are written to the process window of the ETMS operator's node.

28.1.3 The Sff Manager Process

Purpose

The Sff manager process directs the functional flow of processing from initialization through
storage of flight data. It also opens and closes output files based on time data received from
the FDB and writes general statistics and top level errors to the process window of the
ETMS operator node.

Execution Control

The Sff manager starts the Sff receiver and Sff collect processes . The Sff manager monitors
the time received from FDB and opens and closes the archiving files according to the user's
parameter. It also monitors the size of data in the process window, closes the window, and
opens a new one when necessary. The Sff is started by the Hubsite operations staff.

Input

The Sff manager input consists of an input parameter file called store_flushed_flts.params
containing the following four parameters:

(1) working directory - the pathname of the directory in which Sff will run

ETMS System Design Document
Version 6.0

28-7

(2) archive directory - the pathname of the directory in which to open the files
used for storing the flight data

(3) Sff receiver parameter file - the name of the file containing the parameters for
establishing the receiver

(4) file time length - an integer that represents the number of whole hours of data
to be stored in each output file

Output

Sff manager output is any error or informational message and the statistics it writes to the
process window of the ETMS operator node.

Processing

The Sff manager begins by reading the input parameters (see input above for description).
The Sff manager then either generates Sff receiver if it does not exist or links to one if it does
exist. The Sff manager then opens an output history file (called history.[date]) for use by Sff
collect.

The Sff manager retrieves data from the receiver and determines the data type. If the data is
flight data, the Sff manager passes the data to Sff collect; if the data is time data, the Sff
manager checks the FDB time against a previously determined file and closes the file at a
specified time. It immediately opens a new file for use by Sff collect, increments the
appropriate counts, and writes statistical data on a regular basis to the process window of the
ETMS operator node.

Error Conditions and Handling

Errors are written to the process window.

28.2 The build_prediction_tables Subfunction

The build_prediction_tables subfunction produces the category and FID database files that
are used to support the delay_advisor and provide_gtp subfunctions. These database files
each hold predictions of the ground time for the next instance of a specific flight or a
category of flight. They also hold data used to build those predictions. The delay_advisor
subfunction reports supporting data to users upon request. The Provide_gtp subfunction
selects an appropriate prediction and gives it to the FDBP. The build_prediction_tables
processes are run entirely in batch mode.

ETMS System Design Document
Version 6.0

28-8

Input

The inputs are:

• A history file of flushed flight records. A history file from
store_flushed_flts and the previous versions of the catfile and fidfile
provide data inputs that the build_prediction_table subfunction converts
to a new catfile , fidfile.short , and fidfile.

•• Old or previously generated fidfile and catfile

• The cat_def_file , an input that is used to help build_prediction_tables in
categorizing flights

The history files and the cat_def_file are ASCII files. The previous versions of catfile and
fidfile are binary files.

Output

The catfile and fidfile are the outputs, which are binary files. An additional output is
fidfile.short which has the same data structure as fidfile.

Processing

The build_prediction_tables process takes flushed flight data available in the history files and
converts it into the format of a FID-based and a category-based database. As part of the
processing, the previous category and FID databases are recycled and combined with new
data recently collected in the history files. The combination involves algorithms described in
the processing sections of gtpdb_fid and gtpdb_cat described later in this section.

Processes Comprising build_prediction_tables

The build_prediction_tables subfunction is implemented by the following three processes,
which are described separately on the following pages:

(1) Process proc_flushed_flts

(2) Process gtpdb_fid

(3) Process gtpdb_cat

(4)

28.2.1 The proc_flushed_flts Process

Purpose

ETMS System Design Document
Version 6.0

28-9

The proc_flushed_flts subfunction performs the following tasks:

(1) Takes a history file that consists of a record of data on each flight

(2) Discards records that are egregiously incomplete

(3) Winnows extraneous data

(4) Computes some new values derived from the data

(5) Assigns flights to categories

(6) Puts the resultant processed data into the data structure newflights file for use
by subsequent GTPS processes

Execution Control

The proc_flushed_flts process is run in batch mode, at a nominal frequency of once a week
by entering the following command string:

<executable name (e.g., proc_flushed_flts.exe)><parameters file (e.g.,
param_pff)> <history file name> <user specified output file name>

Input

The two inputs are the cat_def_file and a history file. At its initialization, the process reads
into its memory data from the cat_def_file, pointed to by the parameters file, and then it
reads flight records one at a time from a user-specified history file.

Output

The only output is the data structure newflights file in binary format.

Processing

The proc_flushed_flts subfunction loads data from the cat_def_file as it starts up. It then
performs the following tasks:

(1) Opens the user-designated history file and points to the first record

(2) Reads flight record data, one flight record at a time

(3) Discards records that are incomplete or that fail consistency tests or tests of
reasonable values

ETMS System Design Document
Version 6.0

28-10

(4) Performs processing applicable to a record-at-a-time in its
single_record_processing module

(5) Writes the record to a newly opened newflights file once all processing is
completed on a record and the record survives the discard operation

(6) Counts the number of records in newflights

(7) Appends that number as the first record of the file for future processing
convenience

(8) Closes the newflights file, which stops the process

Figures 28-3, 28-4, and 28-5 illustrate this processing. They show an overview of
proc_flushed_flts, the detail of the key routines within proc_flushed_flts (which are
discard_inadequate_records and single_record_processing). Figure 28-6 shows the detail of a
key routine within single_record_processing (which is compute_cat_table_specific_vars).

ETMS System Design Document
Version 6.0

28-11

B e g i n

L o a d d e f s d a t a

p o i n t t o f i r s t r e c o r d
i n d q d _ d a t a _ t

D Q D _ G T P S
I n t e r f a c e

m o r e r e c o r d s ?
o f d q d _ d a t a _ t

s t o r e _ f l u s h e d _ flts

h i s t o r y . [d a t e]

S e p a r a t e P r o c e s s

p o i n t t o n e x t r e c o r d
i n d q d _ d a t a _ t

D i s c a r d
I n a d e q u a t e

R e c o r d s

Y e s

S i n g l e R e c o r d
P r o c e s s i n g

W r i t e r e c o r d t o f i l e
N e w F l i g h t s

N e w F l i g h t s

E n d

h i s to r y f i l e
e x h a u s t e d

N o

F l i g h t C a t e g o r y
D e f i n i t i o n s A r r a y *

* L o a d e d f r o m c a t _ d e f _ f i l e
v i a r o u t i n e “ l o a d d e f s d a t a ”
N o t e : t h e a r r a y w i l l h a v e
o n l y t h e p r i m a r y n a m e s o f
a i r p o r t s .

Figure 28-3. Logic for the proc_flushed_flts Process

ETMS System Design Document
Version 6.0

28-12

exist actl .dep.time ?

date = - 1 ?

numeric dep.airp ?

End

To: Single Record ProcessingTo: Point to next record

Y

Y

Y

N

N

N

If no actual departure time
exists

If airport name is not
either 3 or 4 letters
If record takes this
path it won’t be used
to update the GTPS
DB

Begin

End

Figure 28.4. Logic for the discard_inadequate_records

Assign values to some fields of
gtps_data_t

from appropriate fields in
dqd_data_t

compute_derived_vars

compute_cat_table_
specific_vars

handle_irregular_data

End * Loaded from cat_def_file
via routine “loaddefsdata ”

Flight Category
Definitions Array*

Begin

Figure 28-5. Logic for single_record_processing

ETMS System Design Document
Version 6.0

28-13

Begin

set defaults for cat indices

durcat=9999
todcat=9999
daycat=9999

Compute daycat
0-6

Determine Airport ID

Airport ID = - 1 ?

Compute todcat
0-9

Compute durcat
0-5

End

Look for next flight record

The defaults for todcat
and durcat will be in force
if the airport is not key.
durcat default may also
result for verylong
(>MaxEte) flight.

{Sun,Mon,Tue,Wed,Thu,Fri,Sat}
{0, 1, 2, 3, 4, 5, 6}

Flight Category
Definitions Array *

* Loaded from cat_def_file
via routine “loaddefsdata”

No
Uncategorized airps
have airport id = -1

Yes

The cat table will not be
updated with this flight’s
data

Figure 28.6. Logic for compute_cat_table_specific_vars

ETMS System Design Document
Version 6.0

28-14

Error Conditions and Handling

Errors are reported to the user's screen along with a diagnostic message. If the error is
terminal, the program exits, allowing the user to investigate and correct the problem.

28.2.2 The gtpdb_fid Process

Purpose

The gtpdb_fid process creates or revises a database of flights, which is written as a fidfile.
For each flight, the process makes a prediction of the ground time expected of the next
instance of that flight to depart. These predictions are included in the fidfile. The process
also writes a more succinct version of the database, named fidfile.short .

Design Issues

The flight identifier, or FID, database is maintained as an array of linked lists, with each array
element holding information pertaining to one flight. The linked list associated with the array
element holds instance-specific information for each instance of this flight that has occurred.
As many as 14 instances are retained. If more than 14 are received for a particular flight, the
oldest instances are discarded first, to make room for the new instances.

After the FID database has been prepared and revised as needed by gtpdb_fid, the process
writes the entire array of linked lists to a permanent medium file (on disk) and names it
fidfile. The fidfile is needed for restoring the FID database to memory. It is also needed to
support the delay_advisor application. However, it is possible to use a much shorter file to
support the FDBP application. It is sufficient for the FDBP to have only the most recent
instance data, and not the previous 13 held in the FID database. Therefore a fidfile.short is
written in parallel with fidfile by gtpdb_fid. Fidfile.short contains only the most recent
instance per flight.

Execution Level

This process is run in batch mode, at a nominal frequency of once weekly. It is run by
entering the following command string:

<executable name (e.g., bpt_fid.exe)> <parameter file (e.g., param_algor)>
<restoration file name (e.g., old_fidfile)> <revision file name (e.g.,
newflights)>
<path name for directory for output files>

ETMS System Design Document
Version 6.0

28-15

If restoration is not needed, the keyword "none" should be used in place of the restoration file
name, such as in the following example:

<executable name (e.g., bpt_fid.exe)> <parameter file (e.g., param_algor)>
none <revision file name (e.g., newflights)> <path name for directory for
output files>

Input

The process takes the following input files:

• A parameters file, with values for the algorithm parameters, in Table 28-1

• A previous output file from this process, which is an old version of the
fidfile. This input file is used to restore the FID database as it was at the
end of the last execution of the process.

• A newflights file, which is used to revise the restored database in
accordance with data newly collected since the last execution of the
process

Output

The process outputs are the fidfile, which is an updated binary file of the last 14 instances of
flight-by-flight data, and fidfile.short , which is like fidfile except it only holds the most
recent instance per flight.

Processing

This process maintains and updates a history of ground time information of the most recent
14 instances of every flight departing each NAS airport. For each flight, the process
generates a prediction, Hegt, for the ground time expected of the next instance of the flight.
(For each flight, gtpdb_db also attempts to generate a prediction, Hete, of flight enroute time
based on the history of enroute times of prior instances of the flight. This enroute time is not
currently used.)

The process divides its work into the following three tasks:

• Restores the FID database from the fidfile, which had been previously
generated

• Revises the FID database with new flight data recently collected in
newflights file

ETMS System Design Document
Version 6.0

28-16

• Writes the revised database to a new fidfile and to a fidfile.short
Stale flights are not written, and hence disappear when the process
terminates. Stale flights are those for which no instance has been
observed in MaxFidAge days (presently 60).

An overview of the gtpdb_fid process is presented in Figure 28-7, following the text
description of the algorithms. Figures 28-8 and 28-9 show more detail about the
revise_fid_db sections of the process.

Prediction of Ground Time Based on FID

The core of the process work occurs in the Revise section of code, in which flight-specific,
FID-ased, ground time predictions, denoted Hegt, are made for each specific flight for which
some history has been obtained. FID-based predictions are made for flights from all airports.

The algorithm requires the use of the previous value of Hegt. A true previous value does not
exist for the first occurrence, therefore, we artificially assign to the previous value the
constant value InitHegt. The current value of InitHegt is 15.

At startup time, the algorithm reads a file param_algor that contains parameters to compute
the new predictions of the ground time. Table 28-1 lists the currently recommended
parameter values for this file.

Table 28-1. Algorithm Parameters

(all units in minutes)

Upper Threshold
for Adjustment

T1 3

Lower Threshold
for Adjustment

T2 -2

AGT
Out of Range

T3 45

AGT – EGT
Out of Range

T4 15

Step Size
for Adjustment

T5 -1
+1

As flights are flushed and their information is available to update the GTPS FID database's
Hegt predictions, each new flight's actual ground time (Agt) is integrated with the previous
value of Hegt. Even the information from the very first occurrence of a flight is used to

ETMS System Design Document
Version 6.0

28-17

update the Hegt prediction, using InitHegt as the previous value as noted above. The update
algorithm follows.

Update Algorithm: The difference is computed between Hegt, the current predicted ground
time for pending flights, and Agt, the actual ground time experienced by the recently flushed
instance of the flight.

Difference = Agt - Hegt (units of minutes)

The Difference is used to set a value for an Addend as shown in the following table:

If Difference >= T1, then Addend= T5

If Difference <= T2, then Addend= -T5

The Addend is then used to adjust the existing Hegt to form the new Hegt, as follows:

Hegt [pending] = Hegt [previous] + Addend (units of minutes)

The following classes of flights are not used to update the FID database predictions of ground
times:

• Controlled flights

• Flights with a negative actual ground time, Agt

• Outliers, flights with Agt exceeding T3

If the first occurrence of a flight has an Agt above T3, currently assigned the
value 45 minutes, the "previous value" is given as usual by InitHegt, but that
Initial value is not updated by the outlying Agt. Subsequently occurring flights
which have Agts above T3 are not used to update the Hegt. The Hegt
associated with their flight is not updated.

•• Flight instance with the actual ground time exceeding the predicted
ground time, Hegt, by greater than T4 minutes, Agt > Hegt +T4. This
instance is going to be check only if the FidCount is greater than
MinNumFid.

However, when Agt > Hegt + T4 is true, the algorithm checks the previous
flight with the same expression. If the test of the previous flight returns true, it
means that is an outbreak. Then this flight instance is used to update the
ground time prediction Hegt with the addend.
T4 functions like T3, except it is the upper limit not on Agt but on Agt-Hegt.

It should be noted that these flights are not excluded from the database. The database retains
them for presentation to the user via the Delay Advisor. They simply are not allowed to
update the Hegt prediction.

ETMS System Design Document
Version 6.0

28-18

Prediction of Enroute Time Based on FID

Ete is used to denote the actual time enroute (as measured by the difference between times in
DZ and AZ messages) of a specific flight instance. Hete is used to denote the prediction
made by gtpdb_fid for the enroute time of the next instance of a specific flight.

The initial value of an Hete for a specific flight is set to the Ete of the first instance of the
flight.

As flights are flushed and their information is available to update the GTPS category
database's Hete predictions, each new flight instance's actual time enroute (Ete) is averaged
with the existing value of Hete, as follows:

Hete [pending] = 0.95*Hete [previous] + 0.05*Ete [of new instance]

If Ete exceeds MaxEte, currently set to 999 minutes, then the prediction, Hete, is not
adjusted by this instance's Ete.

Error Conditions and Handling

Errors are reported to the user's screen along with a diagnostic message. If the error is
terminal, the program exits, allowing the user to investigate and correct the problem.

ETMS System Design Document
Version 6.0

28-19

NewFlights

Begin

Restore
FID DB

Revise FID DB
adds in new
flight data

Write New
FID File

delete stale
recs here

End

GTPDB_FID

pre-existing
OldFIDFile

This file may be discarded
once Cat File and FID File
are done.

FID
DB

FID File FIDFile.SHORT

Legend

Control (solid)

Data (dashed)
to Delay_advisor to Provide_GTP

Revise FID DB both reads
and writes from DB.

Figure 28.7. Data Flow of the gtpdb_fid Process

ETMS System Design Document
Version 6.0

28-20

Begin

Read record from NewFlights

Check if flight (FID, DeptA)
is in FID DB

N

NewFlights

Is it in DB?

Amend
Old
Flight

(see detail in
separate figure)

UpdateHead
update header of existing record

Update DB with this
FID*Airp header

and instance

More
records

in
NewFlights

?

End

N

FID
DBY

N Y

Legend

Control (solid)

Data (dashed)

Append
New
Flight

(see detail in
separate figure)

Figure 28.8. Logic for Revise_FID_DB, Part One

ETMS System Design Document
Version 6.0

28-21

Append New Flight

Revise Hegt

If Agt > = MaxAgt Then Hegt=InitHegt
If Agt < 0 Then Hegt=InitHegt
If Gtm=Ctl Then Hegt=InitHegt

Else:
Hegt =InitHegt + Addend

addend set on basis of difference
between Agt and InitHegt

Revise Hete

If Ete > = MaxEte Then Hete=9999
Else: Hete= Ete

Hdate, FS left as is

They remain as NewFlights set them:
FS set per the particular instance,
Hdate set to the instance’s date

Revise Hegt

If Agt > = MaxAgt Then leave Hegt as is
If Agt < 0 Then leave Hegt as is
If Gtm=Ctl Then leave Hegt as is

Else:
Hegt =Previous Hegt + Addend

addend set on basis of difference
between Agt and Prevous Hegt

Revise Hete

If Ete > = MaxEte, Then leave Hete as is
Else:

If Previous Hete > MaxEte, Then
Hete = Ete

If Previous Hete <= MaxEte, Then
Hete = 0.95Previous Hete+0.05Ete

Amend Old Flight

set Hdate = Idate

Set FS in Header

If FS of this new record
is “y”, then set header
variable FS=“y”

Constants

MaxAgt=90
MaxEte=999

Figure 28.9. Logic for Revise_FID_DB, Part Two

ETMS System Design Document
Version 6.0

28-22

28.2.3 The gtpdb_cat Process

Purpose

The gtpdb_cat process creates or revises a database of ground times, organized by generic
flight departure categories. The process writes the database to a file named catfile . For each
category, the process makes a prediction of the ground time expected of the next instance of
that category of flight to depart. Information about individual flights or flight instances is not
retained, only a revised categorical prediction is retained. The categories partition the set of
all flights by airport, departure time of day, departure day of week, and flight duration. Only
airports listed in the cat_def_file generated by the build_def_file process have categories in
this database. Controlled flight instances and instances with negative or outlying ground times
do not contribute to this database.

Design Issue

The category database is maintained as a simple array. The array is four dimensional, with
one index representing the airport (currently 55 are listed), the second index the day of week,
the third the time of day category, and the fourth the duration category. The value of the
array entry is the predicted ground time associated with the category defined by the
concatenation of the array indices.

Execution Level

This process is run in batch mode, at a nominal frequency of once weekly. It is run by
entering the following command string:

<executable name (e.g., bpt_cat.exe)> <restoration file name (e.g.,
old_catfile)>
<revision file name (e.g., newflights)> <path name for directory for output
files>

The user is prompted to enter the path name of the working directory at this time. The
program assumes that a restoration file (a previous incarnation of catfile), if any, will be
found in the user-specified working directory. The program will place its output, the catfile ,
in that same directory.

Input

The process uses the following two input files:

ETMS System Design Document
Version 6.0

28-23

(1) The previous output file from this process is an old version of the catfile . This
input is used to restore the category database as it was at the end of the last
execution of the process.

(2) A newflights file, which is used to revise the restored database in accordance
with data collected since the last execution of the process.

Output

The process output is catfile , an updated binary file of flight data that is organized into
categories.

Processing

The gtpdb_cat process maintains and updates a weighted running average of the ground time
experienced by each category of flight departures. It uses this average as a prediction of the
ground time of the next flight instance of the same category. The gtpdb_cat process does the
following:

• Restores the category database that had been previously generated

• Revises the category database with new flight data recently collected

• Writes the revised database to a new catfile
Catfile does not become stale and is not discarded. As new flights arrive
to increase the population that has contributed to a category, the older
flights have a lesser influence on the ground time prediction.

Figure 28-10 presents an overview of the gtpdb_cat process, after the text description of the
update algorithm. Figure 28-11 shows more detail about the revise_cat_db aspects of the
process.

Prediction of Ground Time Based on Category

Categorical or generic predictions of ground time, denoted as Gd, are made for each of
various categories of flights. These categories are defined in terms of ranges of time of day,
duration of flight, day of week, and specific airport. Categorical predictions are made for
each of 55 key airports. Categorical predictions are not made for other airports.

When gtpdb_cat receives a flight from the data archive that is the first flight belonging to one
of the database's categories, the process arbitrarily assigns an initial value, InitCatPred, for
the ground time prediction associated with the category. The current value of InitCatPred is
15 minutes. InitCatPred becomes the initial "previous" value of Gd. That initial value is then

ETMS System Design Document
Version 6.0

28-24

immediately updated by use of the flight's own ground time in accordance with the update
equation.

As a flight is flushed, its actual ground time (Agt) is averaged with the existing value of Gd to
obtain an updated predicted value, shown as follows:

Gd [pending] = 0.95*Gd [previous] + 0.05*Agt [of new instance]

The following classes of flights are not used to update the ground time running average
maintained for each category:

• Controlled flights

•• Flights with a negative actual ground time, Agt

•• Outliers, flights with Agt exceeding MaxAgt

(current value of MaxAgt = 90 minutes)

• General Aviation flights

Error Conditions and Handling

Errors are reported to the user's screen along with a diagnostic message. If the error is
terminal, the program exits, allowing the user to investigate and correct the problem.

ETMS System Design Document
Version 6.0

28-25

NewFlights

Begin

Restore
Cat DB

Revise Cat DB
adds in new
flight data

Write New
Cat File

End

Pre-existing
OldCatFile

Cat
DB

Cat File

This file may be discarded once
Cat File and FID File are done

This copy of DB is used
to facilitate developing
the new Cat file

Revise Cat DB only
writes to DB, does not
read

Except it does read to the
extent of determining if a
category has already
been created, and its
pointer isn’t null

Legend

Control (solid)

Data (dashed)

to delay_advisor and provide_gtp

GTPDB_Cat

Figure 28.10. Logic for the gtpdb_cat Process

ETMS System Design Document
Version 6.0

28-26

Read record from NewFlights

Define category indices
associated with this instance

Key Airport?
An! = -1

Controlled
Flight?

Outlier?
Agt>=MaxAgt

?

Negative
Ground time

Agt<0
?

Category
indices below

maxima

Compute new Gd for this set of category indices
Update Cat DB with new Gd value

new Gd = 0.95*old Gd + 0.05*this instance’s Gd
Except, if old Gd doesn’t exist (DB pointer is Null)

Then
new Gd = 0.95*InitCatPred + 0.05*this instance’s Gd

More
records in
NewFlights

?

Revise Cat DBNewFlights

Cat
DB

N

Flights taking this path
will not enter Cat DB

i.e., Du<MaxDur
Td<MaxTod
Dw<MaxDo
An<MaxAir

Constants

MaxAgt=90
InitCatPred = 15

N

Y

Y

Y

N

Y

N

N

N

Y

Figure 28.11. Logic for Revise Cat DB

ETMS System Design Document
Version 6.0

28-27

28.3 The provide_gtp Subfunction

The provide_gtp subfunction is embedded in the FDBP. The provide_gtp subfunction
provides ground time predictions for flights as the FDB needs them. It then takes those
predictions from a category-based or a FID-based database in accordance with the algorithm
described in Figure 28-2. his subfunction is implemented by the module provide_gtp which is
a part of the FDB process.

28.3.1 The provide_gtp module

Purpose

This module provides the FDBP with ground time predictions (and an indication of the
method by which the prediction was made) upon request.

Design Issue

Provide_gtp was designed with the intention of minimizing its impact on the FDBP. For
determining a prediction, an algorithm looks up a prepared prediction in the category and FID
prediction databases; it does not itself compute a prediction. Only those parts of the
algorithm that are needed are used for the particular prediction to be made. The simplest and
most likely cases are attempted first and, if successful, subsequent parts of the algorithm are
not used.

Execution Level

This module is used by the FDBP, which runs continuously. The FDBP invokes
provide_gtp whenever the FDBP processes an FS or FZ message.

Input

The provide_gtp module requires a catfile , fidfile.short , and the cat_def_file .

At initialization of the FDBP, provide_gtp reads the information from the cat_def_file into its
memory. During operations, the catfile and fidfile.short provide data inputs from which
provide_gtp will build prediction databases. In those cases for which flight history data is
unavailable, provide_gtp uses the cat_def_file information in deciding to which category a
flight pertains.

ETMS System Design Document
Version 6.0

28-28

Output

Output from provide_gtp are ground time predictions and the method of prediction. These
are given to the FDBP for assignment to flight records.

Processing

At FDBP initialization, the provide_gtp module reads into memory the cat_def_file , and uses
the bldcatdb and bldfiddb routines to restore to memory current versions of the category and
FID databases.

In operation, provide_gtp receives requests for ground time predictions. It responds to them
by carrying out the algorithm described in Figure 28-13. Figures 28-14, 28-15 and 28-16
show the logic by which provide_gtp obtains a prediction.

Criteria for Switching Between FID-Based and Category-Based Predictions

The FID-based prediction is used in preference to the category-based whenever possible.
The exception in which the category-based prediction is used is that the flight (i.e., the
concatenation of FID and departure airport) is not listed in the flight database.

If a flight is listed in the FID database, but the flight has controlled status, then a default of
zero minutes is used for the prediction.

Begin

Restore
Cat DB

End

bldcatdb

This file created weekly
by gtpdb_cat

Category-based
prediction database

FIDFile.short

Begin

Restore
FID DB

End

FID
DB

bldfiddb

This file created weekly
by gtpdb_fid

Fid-based
prediction database

CAT
DB

CatFile

ETMS System Design Document
Version 6.0

28-29

Figure 28-12. Building the Prediction Databases for Provide_GTP

ETMS System Design Document
Version 6.0

28-30

Begin

End

FID_Based_
_Processing

Category_Based_
_Processing

Was FID Data found
In database?

From FDB_SDB_GTPS_IDS

extract data items needed
to support provide_GTP

Category-based data either
found or not found

Yes

FID- based data was found

No

FID-based data not found

Ends with EGT, ETE, and Method being assigned values

Begins with a call from FDBP

Flight Data

From FDB

Figure 28-13. Logic for Provide_GTP

ETMS System Design Document
Version 6.0

28-31

Begin

Function GetFIDPred
Attempt to find a FID-Based
ground time prediction

and H -ETE
from FID Table

Employ C -Language routine
Getfiddata

FID
DB

Found
FIDPred & H-ETE

In FID Table?

Controlled Flight?

EGT=FIDPred
Method=AC
ETE=H-ETE

EGT=0
Method=CTL
ETE=H-ETE

Set flag to indicate
that FID data

was found

End

Set flag to indicate
that FID data
was not found

Getfiddata

FID Table data

Yes No

FID-based data was found

Note: if flight is controlled the
archived fid data is not
used for PGT, but it is
used for ETE

Here we are asking if the pending
flight (for which a prediction is
requested by the FDB)
is controlled.

Yes No

FID-based data was
not found

Figure 28-14. Logic for FID_Based_Processing

ETMS System Design Document
Version 6.0

28-32

Begin

Controlled Flight?

Determine Airport ID
from airport name
Also determine TOD and
duration category boundaries

Airport ID = -1?

Compute from Flight Record
the factors defining this flight’s
category indices

Airp
DOW
TOD
Duration

Function GetCatPred

Attempt to find a category
based ground time prediction
from Cat Table

Employ C-language routine
Getcatdata

Prediction Assignments for
Listed Airport Uncontrolled

Departures

PGT = 0
Method = CTL
H-ETE= Unknown

PGT = SmlAirpPgt
Method = DEF**
H-ETE Unknown

End

Cat
DB

Yes

No Loaded from cat_def_file
via routine “loaddefsdata”

Yes

Uncategorized
airps have

Airport ID = -1

SmlAirpPgt = 10

Getcatdata

Cat Table Data

Flight Category
DefinitionsArray

No

Figure 28-15. Logic for Category_Based Processing

ETMS System Design Document
Version 6.0

28-33

Begin

Evaluate CatPred
In Cat Table

If
catpred>Max_GTD

If
catpred<0.0

PGT = CatPred
Method = Cat
H-ETE Unknown

End

PGT = Max_GTP
Method = Cat
H-ETE Unknown

PGT = 0.0
Method = Cat
H-ETE Unknown

PGT = NoCATPgt
Method = DEF**
H-ETE Unknown

Yes

Yes

Yes

No

No This is a trap for erroneous values

The cat table contains 0.0
entries for those categories
lacking any flight data.

NoCatPgt = 15

No

If
catpred=0.0

Figure 28-16. Prediction Assignments for Listed Airport Uncontrolled Departures

ETMS System Design Document
Version 6.0

28-34

28.4 The build_def_file Process

Purpose

The build_def_file ancillary process is used as a convenience for preparing the cat_def_file
(see Figure 28-17). This file lists the key airports for which category predictions will be
made and for which reports describing ground times by category will be available. The
build_def_file process does the following:

• Assigns to each airport an arbitrary identifier number

• Assigns to each airport the number of time of day and duration categories

• Defines the boundaries of those categories

•• Writes the data to the cat_def_file

This data is later used by the processes comprising build_prediction_tables and by the
delay_advisor subfunction.

Design Issue

For convenience in development, debugging, testing, and maintenance, it was decided that the
cat_def_file would be an ASCII file.

Execution Level

This process is run in batch mode and is only run when ETMS program management
determines that some change is needed in the cat_def_ file , which is the process output.

Input

None. The information used by this process is hard-coded into it. Input is provided under the
auspices of the ETMS program management.

Output

Build_def_file produces the file named cat_def_file . This file contains data needed by other
GTPS processes to identify airports and to help categorize by duration and time of day flights
departing those airports.

Processing

ETMS System Design Document
Version 6.0

28-35

The process directly lists the key airport names. It uses simple assignment statements to
assign each airport an identifying index and assign duration and time of day category
boundaries unique to the airport.

Error Conditions and Handling

Errors are reported to the user's screen along with a diagnostic message. If the error is
terminal, the program exits, allowing the user to investigate and correct the problem.

When a user requests a category report from
the delay_advisor, the DA needs to obtain
the Airp ID from the cat_defs file in order to
invoke getcarddata. Also, the DA needs to
obtain the hours defining the TOD category
boundaries it needs for the title of the report.

build_def_file

cat_def_file

BPT needs to use the cat_defs file in
order to obtain Airp ID, Duration, and
TOD category number in order to assign
those values to a flight instance. It also
needs those values in order to use the
category database via getcatdata as
part of updating egt predictions for
flights.

Access DB
getcatdata

BPT
a process

loaddefsdata

The function “loaddefsdata” is used by BPT, FDBP, and DA
at their initialization, to load data from the cat_defs file.
Each process will load data from the file into its own
memory array.

If the file is altered, it must be assured that all processes
load the new data at the same time, otherwise category
definitions may differ among the processes.

FDBP
A Process

Provide_GTP
getcatdata

loaddefsdata

When the FDB requests predictions of provide_gtp, provide_gtp
may need to get a category prediction using getcarddata. To do
so, it needs to know the Airp ID, Duration, and the TOD
boundary hours for the specific Airp in order to provide
getcatdata with its calling arguments.

Access DB
getcatdata

loaddefsdata

DA
a process

Figure 28-17. Usage of the cat_def_file

ETMS System Design Document
Version 6.0

28-36

28.5 GTPS Test Routines

Three test routines were prepared to facilitate debugging and testing. These routines allow a
user to print and read the newflights file, the fidfile (or fidfile.short), and the catfile , which
are unprintable binary files in their native form. See Figure 28-18.

build_def_file
store_flushed_flts

cat_def_file history. [date]

This is an
ASCII file

Which can
Be visually
Inspected.

proc_flushed_flts

Archive
Interface

OldCatFile Old FIDFile

GTPDB
_Cat

GTPDB
_FID

The cat program and
the FID program present

menus allowing the
user to examine the

databases in fine detail.

Cat
DB

FID
DB

CatFile FIDFile or
FIDFile.SHORT

TestCatFile
reads CatFile and
displays contents

in cat_ascii.

TestFIDFile
reads FIDFile or FID -

File.SHORT and
displays contents in

fid_ascii.

cat_ascii fid_ascii

Delay Advisor Provide_GTP

NewFlights New_Flights_ascii

TestNewFlights
reads NewFlights

and displays
contents in file

New_Flights_ascii.

Figure 28-18. Built-in Test Features

ETMS System Design Document
Version 6.0

28-37

A design issue for each of the test routines is that the output ASCII file is to be as equivalent
as possible to the input binary file, except that only the output is printable and user-readable.
There is no intent to filter any of the information, or apply any decision criteria to it.

28.5.1 The testnewflights Test Routine

Purpose

The testnewflights test routine takes the newflights file as an input and generates an ASCII
equivalent called NewFlights_ascii

Execution Level

This routine is executed in batch mode as desired to support debugging and test. The routine
is run by entering the following:

testnewflights <name of file of new flights>

Input

The input is any file of the newflights file data structure as described by the newflights data
structure.

Output

The ouput is an ASCII file named New_Flights_ascii, of the same apparent data structure as
newflights.

Processing

The input data structure is decoded and written to an ascii file.

Error Conditions and Handling

Errors are reported to the user's screen along with a diagnostic message. If the error is
terminal, the program exits, allowing the user to investigate and correct the problem.

28.5.2 The testcatfile Test Routine

ETMS System Design Document
Version 6.0

28-38

Purpose

The testcatfile routine takes the catfile file as an input and generates an ASCII equivalent
called catfile_ascii.

Execution Level

This routine is executed in batch mode, as desired, to support debugging and test. It is run by
entering the following:

testcatfile <name of file catfile>

Input

The input is any file of the catfile file data structure.

Output

The ouput is an ASCII file named catfile_ascii, of the same apparent data structure as
catfile .

Processing

The input data structure is decoded and written to an ASCII file named catfile_ascii.

Error Conditions and Handling

Errors are reported to the user's screen along with a diagnostic message. If the error is
terminal, the program exits, allowing the user to investigate and correct the problem.

28.5.3 The testfidfile Test Routine

Purpose

This routine takes the fidfile or the fildfile.short file as an input and generates an ASCII
equivalent called fidfile_ascii.

Execution Level

This routine is executed in batch mode as desired to support debugging and testing. It is run
by entering

ETMS System Design Document
Version 6.0

28-39

testfidfile <name of file fidfile>

Input

The input is any file of the fidfile file data structure, including possibly fidfile.short .

Output

The ouput is an ASCII file named fidfile_ascii, of the same apparent data structure as fidfile.

Processing

The input data structure is decoded and written to an ASCII file fidfile_ascii.

Error Conditions and Handling

Errors are reported to the user's screen along with a diagnostic message. If the error is
terminal, the program exits, allowing the user to investigate and correct the problem.

28.6 GTPS Data Structures

This section describes the data structures used by the various processes comprising the
GTPS subsystem. Some of these structures are used by one and only one process. Some
are shared between the processes, and some are shared with other ETMS functions which
interact with the GTPS via these data structures.

The GTPS employs five key data structures:

(1) history_file

(2) newflights

(3) fidfile

(4) catfile

(5) cat_def_file

The history_file and the cat_def_file are ASCII files and the others are binary files. They
are defined in the Tables 28-2 through 28-6 at the end of this section.

In addition to the five key data structures, there are three ancillary structures generated by the
test routines described in Section 28.5. These ancillary structures are newflights_ascii,

ETMS System Design Document
Version 6.0

28-40

fidfile_ascii, and catfile_ascii, also described in the tables at the end of this section.

28.6.3 The history_file Data Structure

This structure is an ASCII file.

The history_file data structure is used to store records of flushed flight information (see
Table 28-2). This information is stored in the history_file as it is flushed. It is later used by
Build Prediction Tables as the material from which it will build prediction tables for
subsequent flights.

ETMS System Design Document
Version 6.0

28-41

Table 28-2. History_file Data Structure

Store Flushed Flights Output Content

Purpose: This is the data structure of the file history.[date], which is generated by
the store_flushed_flts.c and used by proc_flushed_flts.c

Data Item Definition Unit/Format Var. Type

id_of_flight flight identification 1 or 3 letters followed by
numbers

string7

departure_date julian date for flight’s
departure

number of days since
January 1, 1980

unsigned short

user_category category of user an enumerated type:
commercial, military, etc.

usercat_t

ac_cat_class specific type of aircraft an enumerated type: civilian
jet, single_piston_prop, etc.

ac_cat_t

ac_weight_class aircraft weight class an enurmerated type: small,
large, etc.

ac_weight_t

ground_time predicted number of
minutes for flight to taxi

minutes short

ground_time_metho
d

mode used in ground
time determination

a=aircraft; c=category;
t=controlled; d=default

char

departure_ap airport of flight’s origin combination of 3 or 4 letters
and numbers

string4

sched_dep_time flight’s scheduled
departure time (from
FS)

minutes from midnight short

proposed_dep_time flight’s proposed
departure time (from
FZ)

minutes from midnight short

control_dep_time flight’s controlled
departure time (from
EDCT)

minutes from midnight short

actual_dep_time flight’s actual departure
time (from DZ)

minutes from midnight short

arrival_ap destination airport of
flight

combination of 3 or 4 letters
and numbers

string 4

sched_arr_time flight’s scheduled time
of arrival (from FS)

minutes from midnight short

proposed_arr_time flight’s propsed arrival
time (from FZ)

minutes from midnight short

control_arr_time flight’s controlled arrival
time

minutes from midnight short

curr_arr_time current prediction for
flight’s arrival time

minutes from midnight short

actype NAS abbreviation for
aircraft type

combination of letters and
numbers

string4

ETMS System Design Document
Version 6.0

28-42

28.6.4 The newflights Data Structure

This structure is a binary file, and is generated by proc_flushed_flts.c.

The newflights data structure is used as an intermediate file (see Table 28-3). It holds the
information from the history file, except irrelevant or unusable data is eliminated, and certain
derived variables are appended to each flight's record. This file serves as an input for the
construction of the fidfile and catfile .

The newflights_ascii Data Structure

This structure is an ASCII file.

The newflights_ascii data structure is an ascii representation of the newflights data
structure. It is intended as a convenience to development, testing, and revision.

28.6.5 The fidfile and fidfile.short Data Structures

These structures are binary files and are generated by gtpdb_fid.c.

The fidfile data structure is used to hold information about individual flights (see Table 28-4).
It is organized as an array of linked lists; each linked list consists of the 14 most recent
instances of a particular flight. It holds information directly taken from the newflights file as
well as predicted values of ground times and enroute times which are computed
algorithmically. This file serves as a source of ground time and enroute time predictions to
traffic specialists via the delay advisor.

Fidfile.short has the same structure as fidfile. Fidfile.short differs from fidfile in the
following two respects:

(1) It contains only the most recent instance per flight, not the last 14 instances.

(2) It excludes flights for which the fidfile has fewer than minimum (nominally 4)
fid instances. This file serves as a source of ground time predictions to the FDB
via the provide_gtp process.

The fidfile_ascii Data Structure

This structure is an ASCII file.

The fidfile_ascii data structure is an ASCII representation of the fidfile data structure. It is
intended as a convenience to development, testing, and revision.

ETMS System Design Document
Version 6.0

28-43

Table 28-3. Newflights Data Structure

Data Structure Name: output_rec_t

Purpose: This is the data structure of the newflights file, which is generated by
proc_flushed_flts.c.
newflights is used by gtpdb_fid.c and gtpdb_cat.c; but each of these two
programs only uses a subset of the data items of output_rec_t. A
number of items are assigned values for this data structure simply to hold
a place, facilitating subsequent data processing.

FID Tables Header

Fid Flight Identifier, read directly from history file Fid_t
DepA Departure airport, read directly from history file DepA_t
DestA Destination airport, read directly from history file DepA_t
FidCount Assigned placeholder value = 1 un.short
Hegt Assigned placeholder value = Egt un.short
Hete Assigned placeholder value = Ete un.short
Hdate Assigned placeholder value = Idate un.short
Fs Flight Schedule Flag, set to y if there exists a sched dept; otherwise to n char

FID Tables Instance
Egt Predicted ground time, read directly from history file un.short
Agdt MinFromMid of (actl. dep. time) un.short
Pgdt MinFromMid (ctld), or MinFromMid (prop), or 9999 un.short
Gtm Ground time method, read directly from history file un.short
Idate JulianDate of this instance read from history file un.short
Ete Estimated time enroute, from history file values, [actu arr – actu dept] un.short

Other Item
Agt Agdt-Pgdt; [except if Pgdt =9999, Agt=9999; if Agt<MinAgt, Agt=9999] short

Cat Table Items
An Departure airport ID from cat_defs_file short
Du Duration category index from cat_def_file, based on Ete short
Td Time of day category index from cat_def_file, based on Pgdt short
Dw Day of week category index from cat_def_file, based on Idate short
Gd Assigned placeholder value = Agt float

Note: Gtm values 0,1,2,3,4 correspond to ac, cat, ctl, default, spare.
**Defaults of 9999 are used for unavailable fields

ETMS System Design Document
Version 6.0

28-44

Table 28-4. Fidfile Data Structure

Data Structure Name: output_rec1_t

Purpose: This is the data structure of the file fidfile and fildfile.short, generated
by gtpdb_fid.c.

Fid Tables Header

Fid Flight Identifier, read directly from history file Fid_t
DepA Departure airport, read directly from history file DepA_t
DestA Destination airport, read directly from history file DepA_t
FidCount Count of instances of this FID—DepA un.short
Hegt Current prediction of ground time for this flight un.short
Hete Current prediction of time enroute for this flight un.short
Hdate Most recent julian date of occurrence of this flight un.short
Fs Flight Schedule Flag char

Fid Tables Instance

Egt This instance’s predicted ground time, from history file un.short
Agdt MinFromMid of (actl.dep.time) un.short
Pgdt MinFromMid (ctld), or MinFromMid (prop), or 9999 un.short
Gtm Ground time method, from history file un.short
Idate JulianDate of this instance read from history file un.short

28.6.6 The catfile Data Structure

This structure is a binary file and is generated by gtpdb_cat.c.

The catfile data structure is used to hold information about categories of flights (See Table
28-5). It is organized as a four-dimensional array with dimensions of airport, day of week,
duration of flight, and departure time of day. It holds information directly taken from the
newflights file as well as predicted values of ground times which are algorithmically
computed. This file serves as a source of ground time and enroute time predictions to the
FDB via provide_gtp, and to traffic specialists via the delay advisor.

The catfile_ascii Data Structure

This structure is an ASCII file.

ETMS System Design Document
Version 6.0

28-45

The catfile_ascii data structure is an ASCII representation of the catfile data structure. It is
intended as a convenience to development, testing, and revision.

ETMS System Design Document
Version 6.0

28-46

Table 28-5. Catfile Data Structure

Data Structure Name: Air[][][][]

Purpose: This is the data structure of the file CatFile , which is generated by
gtpdb_cat.c.
Air is a four dimensional array:
 Air [Airport ID] [DOW index] [TOD index] [Duration index] = Gd

An Departure airport ID from cat_defs_file short
Du Duration category index from cat_def_file , based on Ete short
Td Time of day category index from cat_def_file , based on Pgdt short
Dw Day of week category index from cat_def_file , based on Idate short
Gd Predicted ground time of this category’s flights, from running average float

**Defaults of 9999 are used for unavailable fields

28.6.7 The cat_def_file Data Structure

This structure is an ASCII file.

The cat_def_file data structure identifies the key airports for which category predictions will
be made and for which reports describing ground times by category will be available (see
Table 28-6). The file identifies the key airports simply by naming each of them. The file
assigns to each airport an arbitrary identifier number. It assigns to each airport the number of
time of day and duration categories and it defines the boundary conditions of those categories.
This data is later used by the processes comprising build prediction tables, it is also used by
the delay advisor process.

ETMS System Design Document
Version 6.0

28-47

Table 28-6. cat_def_file Data Structure

cat_def_file content

Purpose: This is the data structure of the ancillary file cat_def_file , which is
generated by build_def_file, and used by build_prediction_tables,
delay_advisor, and provide_gtp.

Data Item Definition Unit/Format Var. Type

airport_name
airport of flight’s origin combination of 3 or 4 letters and

numbers string6

airport_id
airport identity number

short

utc_offset
offset of local time at departure
airport from UTC

hours * minutes
short

num_tod_int
number of times of day
categories in use at this airport

one digit
short

tod_before_midnight
number of time of day
categories at this airport prior
to UTC midnight

one digit
short

The following two itesm are replicated five times.
If some of them are unused, they are given values of “-1”

tod_start
start time of tod category for
this airport

hours * minutes
int

tod_end
end time of tod category for
this airport

hours * minutes
int

The following two items are replicated five times.
If some of them are unused, they are given values of “-1”

mam_start
minutes from midnight format hours * minutes

int

mam_end
minutes from midnight format hours * minutes

int

num_dur_cats
number of duration categories
in use at this airport

one digit
short

The following two items are replicated six times.
If some of them are unused, they are given values of “-1”

dur_cat_min
minimum time duration of this
category

one,two,or three digits
int

dur_cat_max
maximum time duration of this
category

one,two,or three digits
int

